The role of threonine 37 in flavin reactivity of the old yellow enzyme.

نویسندگان

  • D Xu
  • R M Kohli
  • V Massey
چکیده

Threonine 37 is conserved among all the members of the old yellow enzyme (OYE) family. The hydroxyl group of this residue forms a hydrogen bond with the C-4 oxygen atom of the FMN reaction center of the enzyme [Fox, K. M. & Karplus, P. A. (1994) Structure 2, 1089-1105]. The position of Thr-37 and its interaction with flavin allow for speculations about its role in enzyme activity. This residue was mutated to alanine and the mutant enzyme was studied and compared with the wild-type OYE1 to evaluate its mechanistic function. The mutation has different effects on the two separate half-reactions of the enzyme. The mutant enzyme has enhanced activity in the oxidative half-reaction but the reductive half-reaction is slowed down by more than one order of magnitude. The peaks of the absorption spectra for enzyme bound with phenolic compounds are shifted toward shorter wavelengths than those of wild-type OYE1, consistent with its lower redox potential. It is suggested that Thr-37 in the wild-type OYE1 increases the redox potential of the enzyme by stabilizing the negative charge of the reduced flavin through hydrogen bonding with it.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active-site probes of flavoproteins.

The chemical reactivity of 8-chloroflavins and 8-mercaptoflavins has been exploited in order to examine the orientation of protein-bound flavins relative to solvent. The apoprotein form of a series of flavoproteins was prepared and the native flavin was replaced by either 8-C1-flavin or 8-mercaptoflavin (FAD, FMN, or riboflavin form as was appropriate). The reconstituted proteins were exposed t...

متن کامل

'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes.

As the first flavin-dependent enzyme identified, and by virtue of its simplicity, the yeast Old Yellow Enzyme (OYE) has been characterized in detail by the whole gamut of physical techniques. Despite this scrutiny, the true physiological role of the enzyme remains a mystery. After 60 years in isolation, OYE has become the archetype of a growing family of flavoenzymes that have been discovered t...

متن کامل

The flavin environment in old yellow enzyme. An evaluation of insights from spectroscopic and artificial flavin studies.

Spectroscopic and chemical modification studies of modified flavins bound to old yellow enzyme have led to predictions about the flavin environment of this enzyme. These studies analyzed solvent accessibility and hydrogen bonding patterns of particular flavin atoms, in addition to suggesting amino acid residues that are in close proximity to those atoms. Here, these studies are evaluated in the...

متن کامل

Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate.

The reaction of the old yellow enzyme and reduced flavins with organic nitrate esters has been studied. Reduced flavins have been found to react readily with glycerin trinitrate (GTN ) (nitroglycerin) and propylene dinitrate, with rate constants at pH 7.0, 25 degrees C of 145 M(-1)s(-1) and 5.8 M(-1)s(-1), respectively. With GTN, the secondary nitrate was removed reductively 6 times faster than...

متن کامل

6-Thiocyanatoflavins and 6-mercaptoflavins as active-site probes of flavoproteins.

6-Thiocyanatoflavins have been found to be susceptible to nucleophilic displacement reactions with sulfite and thiols, yielding respectively the 6-S-SO3--flavin and 6-mercaptoflavin, with rate constants at pH 7.0, 20 degrees C, of 55 M-1 min-1 for sulfite and 1000 M-1 min-1 for dithiothreitol. The 6-SCN-flavin binds tightly to riboflavin-binding protein as the riboflavin derivative, to apoflavo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 7  شماره 

صفحات  -

تاریخ انتشار 1999